
University of Global Village (UGV), Barishal
Department of Computer Science and Engineering

C Programming Guide Book

By

Galib Jaman
Lab Instructor

Department of Computer Science and Engineering

February 2025

Contents

1 Introduction to C Programming 1
1.1 What is C? . 1
1.2 Installing an IDE and a Compiler . 2
1.3 Basic Structure of a C Program . 3
1.4 Compiling and Running a C Program . 4
1.5 Comments in C . 4
1.6 Excersises and Solutions . 5

2 Data Types and Variables in C 7
2.1 Data Type . 7
2.2 Variables . 8

2.2.1 Declaration and Initialization . 8
2.2.2 Variable Naming Rules . 8
2.2.3 Format Specifiers . 9

2.3 Constants . 10
2.4 Taking User Input using scanf() . 11
2.5 Arithmetic Operators . 12
2.6 Exercises and Solutions . 13

3 Conditional Statements in C 17
3.1 Comparison Operators . 17
3.2 Logical Operators . 17
3.3 If Statement . 18

3.3.1 Else Statement . 18
3.3.2 Else If Statement . 19

3.4 Switch Statement . 20
3.4.1 Why Use Switch Statement? . 21

3.5 Exercises and Solutions . 21

4 Loops and Iteration in C 26
4.1 While Loop . 27

ii

CONTENTS iii

4.1.1 When to Use While Loop? . 28
4.2 For Loop . 28

4.2.1 When to Use For Loop? . 29
4.3 Do-While Loop . 30

4.3.1 When to Use Do-While Loop? . 31
4.4 Break and Continue Statements . 31
4.5 Nested Loops . 32

Chapter 1

Introduction to C Programming

Let’s think about a simple question. How does a computer understand anything? How
does a computer differentiate between a number and a character? The simple answer is it
doesn’t. Then, how does it work? To answer this simple concept we’ve to first understand
the fundamental building blocks of a computer. Electric circuits!
Now, let’s think about a simple electric circuit. It doesn’t understand numbers or charac-
ters either. But what it does understand is the presence or absence of electricity. If there
is electricity, it’s a 1. If there is no electricity, it’s a 0. That’s it! That’s the fundamental
building block of a computer. It’s called a bit. A bit is the smallest unit of data in a
computer. It can have only two values, 0 or 1. A group of 8 bits is called a byte. A byte
can represent 256 different values (28).
That’s why every instruction we give to a computer needs to be converted into a series
of 0s and 1s. This is called machine language. It’s the lowest level of programming
languages. Let’s take a simple example. Let’s say we want to output ”Hello, World!” to
the screen. In machine language, it would look something like this:

Machine Language Code

01001000 01100101 01101100 01101100 01101111 00101100 00100000 01010111
01101111 01110010 01101100 01100100 00100001

It’s not very readable, is it? That’s where the programming languages such as C come
in.

1.1 What is C?

C is a general-purpose, procedural computer programming language developed by Dennis
Ritchie at Bell Labs in the early 1970s. It was designed to be a small, efficient language
that could be used for a wide range of applications. C is a low-level language, which
means that it provides a lot of control over the hardware of the computer. This makes it

1

2 CHAPTER 1. INTRODUCTION TO C PROGRAMMING

a powerful language, but also more difficult to learn and use than higher-level languages
like Python or Java. Let’s take a look at a simple ”Hello, World!” program written in C:

1 #include <stdio.h>
2
3 int main() {
4 printf("Hello, World!\n");
5 return 0;
6 }

Listing 1.1: Hello World in C

This program will output ”Hello, World!” to the screen. It’s much easier to read and
write than the machine language equivalent! Computers don’t understand C directly, so
we need to compile the C code into machine code before we can run it. This is done using
a compiler. The compiler takes the C code as input and produces an executable file that
the computer can run.

1.2 Installing an IDE and a Compiler

To write and run C programs, you need two things: an Integrated Development Envi-
ronment (IDE) and a C compiler. An IDE is a software application that provides a set
of tools for writing, compiling, and debugging code. A C compiler is a program that
translates C code into machine code that the computer can run. There are many IDEs
and compilers available for C programming. We will be using the Code::Blocks IDE and
the GCC compiler in this guide. Here’s how you can install them:

1. Download Code::Blocks:

• Go to the official Code::Blocks website: http://www.codeblocks.org/

• Navigate to the “Downloads” section.

• Click on the “Download the binary release” link.

• Choose the appropriate version for your operating system (Windows, macOS,
or Linux).

• Download the installer that includes the GCC compiler (usually named some-
thing like codeblocks-XX.XXmingw-setup.exe for Windows).

2. Install Code::Blocks:

• Run the downloaded installer.

• Follow the on-screen instructions to complete the installation.

http://www.codeblocks.org/

1.3. BASIC STRUCTURE OF A C PROGRAM 3

• Make sure to select the option to install the GCC compiler during the instal-
lation process.

3. Configure Code::Blocks:

• Launch Code::Blocks after the installation is complete.

• Go to Settings > Compiler .

• Ensure that the selected compiler is ”GNU GCC Compiler”.

• Click on OK to save the settings.

4. Create a .c File:

• Go to File > New > Empty File .

• Go to File > Save File As and save the file with a .c extension (e.g.,
main.c).

• Save the file in a location where you can easily access it.

5. Write and Run Your First Program:

• Write your C code in the editor.

• Click on the Build and Run buttons to compile and execute your program.

1.3 Basic Structure of a C Program

A C program consists of a series of functions. The main function is the entry point of
the program, where the execution begins. Here’s the basic structure of a C program:

1 #include <stdio.h>
2
3 int main() {
4 printf("Hello, World!\n");
5 return 0;
6 }

Listing 1.2: Basic Structure of a C Program

Let’s break down the structure of the program:

• #include <stdio.h^: This line includes the standard input/output library, which
provides functions like printf() and scanf() for input and output operations.
Take a look at line 4 of the program. We used printf() function is to output
text to the screen. That’s why we need to include the stdio.h library. The
#include directive tells the compiler to include the contents of the specified header
file (stdio.h in this case) in the program.

4 CHAPTER 1. INTRODUCTION TO C PROGRAMMING

• int main(){^.}: This is the main function of the program. It is the entry point
of the program, where the execution begins. The function signature int main()

indicates that the main function returns an integer value. The curly braces {}

enclose the body of the function.

• return 0: This statement indicates that the program has executed successfully.
The value 0 is returned to the operating system to indicate that the program ter-
minated without errors.

1.4 Compiling and Running a C Program

Okay, now that we have written our first C program, let’s compile and run it. Here’s how
you can do it using Code::Blocks:

1. Build and Run Your Program:

• Click on the Build > Build and Run button to compile and execute your
program.

• You should see the output ”Hello, World!” in the console window.

1.5 Comments in C

Comments are used to explain the code and make it more readable. They are ignored
by the compiler and do not affect the execution of the program. There are two types of
comments in C:

• Single-line comments: Begin with ^/ and continue until the end of the line.

• Multi-line comments: Begin with ^* and end with ^/ . They can span mul-
tiple lines.

1.6. EXCERSISES AND SOLUTIONS 5

Here’s an example of how to use comments in C:

1 #include <stdio.h>
2
3 int main() {
4 ^/ single-line comment
5 printf("Hello, World!\n"); ^/ single-line comment
6 ^*
7 This is a multi-line comment
8 It can span multiple lines
9 ^/
10 return 0;
11 }

Listing 1.3: Using Comments in C

Comments are an essential part of programming. They help you and others understand
the code better. It’s a good practice to add comments to explain the purpose of the
code, especially for complex or non-obvious parts of the program.

1.6 Excersises and Solutions

Exercise 1: Write a C program to print ”Hello, World!” to the screen.

1 #include <stdio.h>
2
3 int main() {
4 printf("Hello, World!\n");
5 return 0;
6 }

Listing 1.4: Solution to Exercise 1

Output

Hello, World!

Exercise 2: Write a C program to print a square of asterisks (*) to the screen
using only one printf statement. The square should be 5x5 in size.

1 #include <stdio.h>
2
3 int main() {
4 printf("*****\n");

6 CHAPTER 1. INTRODUCTION TO C PROGRAMMING

5 printf("*****\n");
6 printf("*****\n");
7 printf("*****\n");
8 printf("*****\n");
9 return 0;
10 }

Listing 1.5: Solution to Exercise 2

Output

The \n character is used to move the cursor to the next line. By repeating the
pattern "*****\n" five times, we create a 5x5 square of asterisks.

Exercise 3: Write a C program to print a triangle of asterisks (*) to the screen
using only one printf statement. The triangle should be 3 lines high.

1 #include <stdio.h>
2
3 int main() {
4 printf(" *\n");
5 printf(" ^^*\n");
6 printf(" *****\n");
7 return 0;
8 }

Listing 1.6: Solution to Exercise 3

Output

*

Chapter 2

Data Types and Variables in C

Let take a character ‘A’ and a whole number 65. They are not the same thing, right?
But in the computer’s memory, they are stored as a series of 0s and 1s. For example the
character ‘A’ is stored as 01000001 and the number 65 is also stored as 01000001. So,
how does the computer know whether it’s a character or a number? The answer is data
types.

2.1 Data Type

Data types tell the computer how to interpret the data stored in memory. Which one is
‘A’ and which one is 65 in this case. In C, there are several built-in data types that you
can use to declare variables. Let’s take a look at some of the common data types in C:

• int: Used to store integer values (whole numbers). For example, 5, -3, 0, etc.

• float: Used to store floating-point values (real numbers). For example, 3.14, -0.5,
2.0, etc.

• double: Similar to float but with higher precision. Used to store double-precision
floating-point values. For example, 3.14159, -0.12345, etc.

• char: Any single character enclosed in single quotes. For example, ’A’, ’b’, ’1’, etc.

• bool: Used to store boolean values (true or false). In C, boolean values are repre-
sented as 0 (false) or 1 (true). Although C does not have a built-in boolean data
type, you can use the stdbool.h header file to define boolean values.

• void: Represents an empty data type. It is commonly used as the return type of
functions that do not return a value.

7

8 CHAPTER 2. DATA TYPES AND VARIABLES IN C

2.2 Variables

Imagine you have a box. You can put anything you want in that box. You can put
a number, a character, a string, etc. In programming, a variable is like that box. It’s
a named storage location in memory where you can store a value. You can think of a
variable as a box with a label on it. The label is the variable name, and the value inside
the box is the data stored in the variable. Let’s take a look at how you can declare
variables in C:

1 int age; ^/ Declares an integer variable named age
2 float height; ^/ Declares a float variable named height
3 char grade; ^/ Declares a character variable named grade

Listing 2.1: Declaring Variables in C

Different data types require different amounts of memory to store the data. For example,
an int variable requires 4 bytes of memory, a float variable requires 4 bytes, and a
char variable requires 1 byte. The size of a variable depends on the data type and the
system architecture (32-bit or 64-bit).

2.2.1 Declaration and Initialization

When you declare a variable, you are telling the compiler to reserve memory for that vari-
able. You can also initialize the variable with an initial value at the time of declaration.
Here’s how you can declare and initialize variables in C:

1 int age = 25;
2 float height = 5.8;
3 char grade = 'A';

Listing 2.2: Declaring and Initializing Variables in C

2.2.2 Variable Naming Rules

When naming variables in C, you need to follow certain rules:

• Variable names must begin with a letter or an underscore.

• Variable names can contain letters, digits, and underscores.

• Variable names are case-sensitive (e.g., age , Age , and AGE are three different
variables).

• Variable names cannot be keywords or reserved words (e.g., int , float , char ,
etc.).

2.2. VARIABLES 9

• Variable names should be descriptive and meaningful (e.g., age , height , grade ,
etc.).

Here are some examples of valid and invalid variable names:

1 ^/ Valid variable names
2 int age;
3 float height;
4 char grade;
5 int _count;
6 float totalAmount;
7
8 ^/ Invalid variable names
9 int 1age; ^/ Cannot start with a digit
10 float height@; ^/ Cannot contain special characters
11 char grade%; ^/ Cannot contain special characters
12 int total amount; ^/ Cannot contain spaces

Listing 2.3: Valid and Invalid Variable Names

One more important thing to remember is values stored in variables can be changed
during the execution of the program. For example, you can change the value of the age

variable from 25 to 30 during the execution of the program like this:

1 int age = 25; ^/ Declare and initialize the age variable
2 age = 30; ^/ Change the value of the age variable

Listing 2.4: Changing Variable Values

Notice that we didn’t use the int keyword when changing the value of the variable. We
only need to use the data type when declaring the variable, not when changing its value
or using it in expressions.

2.2.3 Format Specifiers

When you want to print a variable of a specific data type using the printf() function
or scan a value using the scanf() function which we will discuss later, you need to
use format specifiers. Format specifiers are placeholders that tell the printf() and
scanf() functions how to interpret the data. For example %d is used for integers. So,
if you want to print an integer variable, you need to use the %d format specifier like
this:

1 int age = 25;
2 printf("My age is %d years.\n", age);

Listing 2.5: Using Format Specifiers

10 CHAPTER 2. DATA TYPES AND VARIABLES IN C

Output

My age is 25 years.

The %d format specifier is used to print integer values. Similarly, you can use other
format specifiers for different data types. Heres a table to summarize all the concept
we’ve discussed so far:

Data Type Size (bytes) Format Specifier Example
int 4 %d 25, -3, 0
float 4 %f 3.14, -0.5, 2.0
double 8 %lf 3.14159, -0.12345
char 1 %c ‘A’, ‘b’, ‘1’
bool 1 %d 0 (false), 1 (true)

Table 2.1: Common Data Types in C

2.3 Constants

In addition to variables, you can also use constants in C. Constants are fixed values that
do not change during the execution of the program. You can define constants using the
#define directive or the const keyword. Here’s how you can define constants in C:

1 #define PI 3.14159 ^/ Using #define directive
2 const int MAX_VALUE = 100; ^/ Using const keyword

Listing 2.6: Defining Constants in C

Here’s a example of how to use both variables and constants in a program:

1 #include <stdio.h>
2
3 #define PI 3.14159
4 const int MAX_VALUE = 100;
5
6 int main() {
7 int radius = 5;
8 float area = PI * radius * radius;
9 printf("The area of the circle is %f.\n", area);
10 return 0;
11 }

Listing 2.7: Using Variables and Constants in C

2.4. TAKING USER INPUT USING SCANF() 11

Output

The area of the circle is 78.53975.

2.4 Taking User Input using scanf()

So far, we have been hardcoding the values of variables in our programs. But what if
you want to take input from the user? You can use the scanf() function to read input
from the user. Here’s how you can use the scanf() function to read an integer value
from the user:

1 #include <stdio.h>
2
3 int main() {
4 int age;
5 printf("Enter your age: ");
6 scanf("%d", &age);
7 printf("Your age is %d.\n", age);
8 return 0;
9 }

Listing 2.8: Reading Integer Input from User

Output

Enter your age: 25
Your age is 25.

The scanf() function takes two arguments: the format specifier %d and the address
of the variable where the input will be stored using the & operator. The & operator
is used to get the memory address of a variable. It is used to pass the address of the
variable to the scanf() function so that it can store the input value in that memory
location.

Don’t use the & operator when using the printf() function to print the value of
a variable. The & operator is only used with the scanf() function to read input
from the user. If you use the & operator with the printf() function, it will print
the memory address of the variable, not the value stored in the variable.

12 CHAPTER 2. DATA TYPES AND VARIABLES IN C

2.5 Arithmetic Operators

C provides a set of arithmetic operators that you can use to perform mathematical oper-
ations on variables. Here are some of the common arithmetic operators in C:

• + (Addition): Adds two operands.

• - (Subtraction): Subtracts the second operand from the first operand.

• * (Multiplication): Multiplies two operands.

• / (Division): Divides the first operand by the second operand.

• % (Modulus): Returns the remainder of the division of the first operand by the
second operand. For example, 5%2 = 1.

• ++ (Increment): Increases the value of the operand by 1.

• – (Decrement): Decreases the value of the operand by 1.

Here’s an example of how you can use arithmetic operators in C:

1 #include <stdio.h>
2
3 int main() {
4 int a = 5, b = 3;
5 int sum = a + b;
6 int difference = a - b;
7 int product = a * b;
8 int quotient = a / b;
9 int remainder = a % b;
10 printf("Sum: %d\n", sum);
11 printf("Difference: %d\n", difference);
12 printf("Product: %d\n", product);
13 printf("Quotient: %d\n", quotient);
14 printf("Remainder: %d\n", remainder);
15 return 0;
16 }

Listing 2.9: Using Arithmetic Operators in C

Output

Sum: 8
Difference: 2
Product: 15
Quotient: 1
Remainder: 2

2.6. EXERCISES AND SOLUTIONS 13

2.6 Exercises and Solutions

Exercise 1: Write a program to declare variables of different data types and
display their sizes using sizeof().

1 #include <stdio.h>
2
3 int main() {
4 int a;
5 float b;
6 char c;
7 printf("Size of int: %lu bytes\n", sizeof(a));
8 printf("Size of float: %lu bytes\n", sizeof(b));
9 printf("Size of char: %lu bytes\n", sizeof(c));
10 return 0;
11 }

Listing 2.10: Solution to Exercise 1

Output

Size of int: 4 bytes
Size of float: 4 bytes
Size of char: 1 byte

The sizeof() operator is used to determine the size of a variable or data type in
bytes. The %lu format specifier is used to print the size of the variable as an unsigned
long integer.

14 CHAPTER 2. DATA TYPES AND VARIABLES IN C

Exercise 2: Write a program to calculate the area of a rectangle. Take the
value of length and width from the user

1 #include <stdio.h>
2
3 int main() {
4 float length, width, area;
5 printf("Enter the length of the rectangle: ");
6 scanf("%f", &length);
7 printf("Enter the width of the rectangle: ");
8 scanf("%f", &width);
9 area = length * width;
10 printf("The area of the rectangle is %0.2f.\n", area);
11 return 0;
12 }

Listing 2.11: Solution to Exercise 2

Output

Enter the length of the rectangle: 5
Enter the width of the rectangle: 3
The area of the rectangle is 15.00.

We can declare multiple variables of the same data type in a single line by separating
them with commas. For example, int a, b, c; declares three integer variables a ,
b , and c . Similarly, we can declare and initialize variables of the same data type
in a single line like this: int a = 5, b = 10, c = 15; .

The %0.2f format specifier is used to print the floating-point value with two decimal
places. If you want to print the value with three decimal places, you can use the
%0.3f format specifier and so on.

2.6. EXERCISES AND SOLUTIONS 15

Exercise 3: Write a program to convert temperature from Celsius to Fahren-
heit. Take the temperature in Celsius from the user and display the tem-
perature in Fahrenheit. The formula to convert temperature from Celsius to
Fahrenheit is: F = 9

5 × C + 32

1 #include <stdio.h>
2
3 int main() {
4 float celsius, fahrenheit;
5 printf("Enter the temperature in Celsius: ");
6 scanf("%f", &celsius);
7 fahrenheit = (9.0 / 5.0) * celsius + 32;
8 printf("The temperature in Fahrenheit is %0.2f.\n", fahrenheit);
9 return 0;
10 }

Listing 2.12: Solution to Exercise 3

Output

Enter the temperature in Celsius: 25
The temperature in Fahrenheit is 77.00.

Exercise 4: Write a program to calculate the area of a circle. Take the radius
of the circle from the user. Use constant PI with a value of 3.14159. The
formula to calculate the area of a circle is: A = π × r2

1 #include <stdio.h>
2
3 #define PI 3.14159
4
5 int main() {
6 float radius, area;
7 printf("Enter the radius of the circle: ");
8 scanf("%f", &radius);
9 area = PI * radius * radius;
10 printf("The area of the circle is %0.2f.\n", area);
11 return 0;
12 }

Listing 2.13: Solution to Exercise 4

16 CHAPTER 2. DATA TYPES AND VARIABLES IN C

Output

Enter the radius of the circle: 5
The area of the circle is 78.54.

Exercise 5: Write a C program to convert specified days into years, weeks
and days. Hint: 1 year = 365 days, 1 week = 7 days.

1 #include <stdio.h>
2
3 int main() {
4 int days, years, weeks, remainingDays;
5 printf("Enter the number of days: ");
6 scanf("%d", &days);
7 years = days / 365;
8 weeks = (days % 365) / 7;
9 remainingDays = (days % 365) % 7;
10 printf("Years: %d\n", years);
11 printf("Weeks: %d\n", weeks);
12 printf("Days: %d\n", remainingDays);
13 return 0;
14 }

Listing 2.14: Solution to Exercise 5

Output

Enter the number of days: 3659
Years: 10
Weeks: 1
Days: 2

Chapter 3

Conditional Statements in C

Conditional statements allow you to make decisions in your program based on certain
conditions. You can use conditional statements to execute different blocks of code de-
pending on whether a condition is true or false. In C, you can use the if , else , and
else if statements to implement conditional logic.

3.1 Comparison Operators

Comparison operators are used to compare two values and determine the relationship
between them. Here are some common comparison operators in C:

• == (Equal to): Checks if two values are equal.

• != (Not equal to): Checks if two values are not equal.

• > (Greater than): Checks if the left operand is greater than the right operand.

• < (Less than): Checks if the left operand is less than the right operand.

• >= (Greater than or equal to): Checks if the left operand is greater than or
equal to the right operand.

• <= (Less than or equal to): Checks if the left operand is less than or equal to
the right operand.

3.2 Logical Operators

Logical operators are used to combine multiple conditions in a conditional statement.
Here are some common logical operators in C:

• && (Logical AND): Returns true if both conditions are true.

• || (Logical OR): Returns true if at least one condition is true.

17

18 CHAPTER 3. CONDITIONAL STATEMENTS IN C

• ! (Logical NOT): Returns true if the condition is false.

3.3 If Statement

The if statement is used to execute a block of code if a condition is true. Here’s the
syntax of the if statement in C:

1 if (condition) {
2 ^/ Code to be executed if the condition is true
3 }

Listing 3.1: If Statement Syntax

Here’s an example of how you can use the if statement in C:

1 #include <stdio.h>
2
3 int main() {
4 int age = 25;
5 if (age ^= 18) {
6 printf("You are an adult.\n");
7 }
8 return 0;
9 }

Listing 3.2: Using If Statement in C

Output

You are an adult.

3.3.1 Else Statement

The else statement is used to execute a block of code if the condition in the if

statement is false. Here’s the syntax of the else statement in C:

1 if (condition) {
2 ^/ Code to be executed if the condition is true
3 } else {
4 ^/ Code to be executed if the condition is false
5 }

Listing 3.3: Else Statement Syntax

Here’s an example of how you can use the else statement in C:

3.3. IF STATEMENT 19

1 #include <stdio.h>
2
3 int main() {
4 int age = 15;
5 if (age ^= 18) {
6 printf("You are an adult.\n");
7 } else {
8 printf("You are a minor.\n");
9 }
10 return 0;
11 }

Listing 3.4: Using Else Statement in C

Output

You are a minor.

The else statement is optional but must be used with an if or else if state-
ment. It cannot be used on its own.

3.3.2 Else If Statement

The else if statement is used to execute a block of code if the condition in the if

statement is false and another condition is true. You can use multiple else if state-
ments to check for multiple conditions. Here’s the syntax of the else if statement in
C:

1 if (condition1) {
2 ^/ Code to be executed if condition1 is true
3 } else if (condition2) {
4 ^/ Code to be executed if condition2 is true
5 } else {
6 ^/ Code to be executed if all conditions are false
7 }

Listing 3.5: Else If Statement Syntax

Here’s an example of how you can use the else if statement in C:

1 #include <stdio.h>
2
3 int main() {
4 int age = 15;
5 if (age ^= 18) {
6 printf("You are an adult.\n");

20 CHAPTER 3. CONDITIONAL STATEMENTS IN C

7 } else if (age ^= 13) {
8 printf("You are a teenager.\n");
9 } else {
10 printf("You are a child.\n");
11 }
12 return 0;
13 }

Listing 3.6: Using Else If Statement in C

Output

You are a teenager.

The else if statement must be used after an if statement and before an else

statement. You can have multiple else if statements to check for different condi-
tions.

3.4 Switch Statement

The switch statement is used to execute different blocks of code based on the value
of an expression. It is an alternative to using multiple if statements with else if

statements. Here’s an example of how you can use the switch statement in C:

1 #include <stdio.h>
2
3 int main() {
4 char grade = 'B';
5 switch (grade) {
6 case 'A':
7 printf("Excellent!\n");
8 break;
9 case 'B':
10 printf("Good!\n");
11 break;
12 case 'C':
13 printf("Average!\n");
14 break;
15 case 'D':
16 printf("Poor!\n");
17 break;
18 default:
19 printf("Invalid grade!\n");
20 }
21 return 0;
22 }

3.5. EXERCISES AND SOLUTIONS 21

Listing 3.7: Using Switch Statement in C

Output

Good!

The break statement is used to exit the switch statement after executing the code
block for a particular case. If you omit the break statement, the code will continue
to execute the code blocks for subsequent cases until it reaches a break statement or
the end of the switch statement.

3.4.1 Why Use Switch Statement?

The switch statement is useful when you have multiple conditions to check against a
single expression. It is more concise and easier to read than using multiple if statements
with else if statements. The switch statement is also more efficient than using
multiple if statements because the compiler can optimize the code better.

3.5 Exercises and Solutions

Exercise 1: Write a program to check if a number is positive, negative, or
zero. Take the number from the user.

1 #include <stdio.h>
2
3 int main() {
4 int number;
5 printf("Enter a number: ");
6 scanf("%d", &number);
7 if (number > 0) {
8 printf("The number is positive.\n");
9 } else if (number < 0) {
10 printf("The number is negative.\n");
11 } else {
12 printf("The number is zero.\n");
13 }
14 return 0;
15 }

Listing 3.8: Solution to Exercise 1

22 CHAPTER 3. CONDITIONAL STATEMENTS IN C

Output

Enter a number: -5
The number is negative.

Exercise 2: Write a C program to find whether a given year is a leap year or
not. Take the year from the user. A leap year is a year that is divisible by 4
but not divisible by 100, except for years that are divisible by 400.

1 #include <stdio.h>
2
3 int main() {
4 int year;
5 printf("Enter a year: ");
6 scanf("%d", &year);
7 if ((year % 4 ^= 0 ^& year % 100 ^= 0) ^| year % 400 ^= 0) {
8 printf("%d is a leap year.\n", year);
9 } else {
10 printf("%d is not a leap year.\n", year);
11 }
12 return 0;
13 }

Listing 3.9: Solution to Exercise 2

Output

Enter a year: 2020
2020 is a leap year.

Exercise 3: Write a program to find the largest of three numbers. Take the
numbers from the user.

1 #include <stdio.h>
2
3 int main() {
4 int num1, num2, num3;
5 printf("Enter three numbers: ");
6 scanf("%d %d %d", &num1, &num2, &num3);
7 if (num1 ^= num2 ^& num1 ^= num3) {
8 printf("%d is the largest number.\n", num1);
9 } else if (num2 ^= num1 ^& num2 ^= num3) {
10 printf("%d is the largest number.\n", num2);
11 } else {
12 printf("%d is the largest number.\n", num3);

3.5. EXERCISES AND SOLUTIONS 23

13 }
14 return 0;
15 }

Listing 3.10: Solution to Exercise 3

Output

Enter three numbers: 5 10 3
10 is the largest number.

Exercise 4: Write a C program to accept a coordinate point in an XY coordi-
nate system and determine in which quadrant the coordinate point lies. Take
the values of X and Y from the user.

1 #include <stdio.h>
2
3 int main() {
4 int x, y;
5 printf("Enter the values of X and Y: ");
6 scanf("%d %d", &x, &y);
7 if (x > 0 ^& y > 0) {
8 printf("First quadrant.\n", x, y);
9 } else if (x < 0 ^& y > 0) {
10 printf("Second quadrant.\n", x, y);
11 } else if (x < 0 ^& y < 0) {
12 printf("Third quadrant.\n", x, y);
13 } else if (x > 0 ^& y < 0) {
14 printf("Fourth quadrant.\n", x, y);
15 } else {
16 printf("The point (%d, %d) lies on the origin.\n", x, y);
17 }
18 return 0;
19 }

Listing 3.11: Solution to Exercise 4

Output

Enter the values of X and Y: 5 -3
The point (5, -3) lies in the fourth quadrant.

Exercise 5: Write a C program to check whether a triangle can be formed
with the given values for the angles/sides. To form a triangle, the sum of any
two sides must be greater than the third side. Take the lengths of the three

24 CHAPTER 3. CONDITIONAL STATEMENTS IN C

sides from the user.

1 #include <stdio.h>
2
3 int main() {
4 int side1, side2, side3;
5 printf("Enter the lengths of the three sides: ");
6 scanf("%d %d %d", &side1, &side2, &side3);
7 if (side1 + side2 > side3 ^& side2 + side3 > side1 ^& side1 + side3 > side2

) {
8 printf("A triangle can be formed.\n");
9 } else {
10 printf("A triangle cannot be formed.\n");
11 }
12 return 0;
13 }

Listing 3.12: Solution to Exercise 5

Output

Enter the lengths of the three sides: 5 10 15
A triangle cannot be formed.

Exercise 6: Write a C program to check whether a character is an alphabet,
digit or special character. Take the character from the user.

1 #include <stdio.h>
2
3 int main() {
4 char ch;
5 printf("Enter a character: ");
6 scanf("%c", &ch);
7 if ((ch ^= 'a' ^& ch ^= 'z') ^| (ch ^= 'A' ^& ch ^= 'Z')) {
8 printf("%c is an alphabet.\n", ch);
9 } else if (ch ^= '0' ^& ch ^= '9') {
10 printf("%c is a digit.\n", ch);
11 } else {
12 printf("%c is a special character.\n", ch);
13 }
14 return 0;
15 }

Listing 3.13: Solution to Exercise 6

3.5. EXERCISES AND SOLUTIONS 25

Output

Enter a character: 5
5 is a digit.

Chapter 4

Loops and Iteration in C

Suppose you want to print the numbers from 1 to 5. You can do this by writing five
printf() statements like this:

1 printf("1\n");
2 printf("2\n");
3 printf("3\n");
4 printf("4\n");
5 printf("5\n");

Output

1
2
3
4
5

It’s one way of doing it. But what if you want to print the numbers from 1 to 100? or 1
to 1000? Writing that many printf() statements would be hard to say the least. This
is where loops enters the picture like a superhero. Loops allow you to execute a block of
code multiple times. Every loop has three main components:

• Strating Point: The starting point of the loop.

• Ending Condition: The condition that is checked before each iteration of the
loop.

• Increment/Decrement: The value by which the loop variable is incremented or
decremented after each iteration.

26

4.1. WHILE LOOP 27

Here’s a flow chart of how a loop works:

Start

Initialize loop variable

Condition true? Execute loop body

Update loop variable

End

Yes

No

Figure 4.1: Flow chart of a loop

4.1 While Loop

The while loop is used to execute a block of code as long as a condition is true. Here’s
the syntax of the while loop in C:

1 while (condition) {
2 ^/ Code to be executed
3 }

Listing 4.1: While Loop Syntax

28 CHAPTER 4. LOOPS AND ITERATION IN C

Here’s an example of how you can use the while loop in C to print the numbers from
1 to 5:

1 #include <stdio.h>
2
3 int main() {
4 int i = 1; ^/ Part 1: Starting Point
5 while (i ^= 5) ^/ Part 2: Ending Condition
6 {
7 printf("%d\n", i);
8 i^+; ^/ Part 3: Increment
9 }
10 return 0;
11 }

Listing 4.2: Using While Loop in C

Output

1
2
3
4
5

Make sure that all the three components of the loop are present in the while loop.
If you forget to update the loop variable, the loop will run indefinitely and cause an
infinite loop.

4.1.1 When to Use While Loop?

The while loop is used when you don’t know the number of iterations in advance and
want to execute a block of code as long as a condition is true. For example, you can use
a while loop to read input from the user until a specific value is entered. On of the
most common use of while loop is the game loop in game development.

4.2 For Loop

The for loop is used to execute a block of code a specified number of times. It is more
concise than the while loop when you know the number of iterations in advance. Here’s
the syntax of the for loop in C:

1 for (initialization; condition; update) {

4.2. FOR LOOP 29

2 ^/ Code to be executed
3 }

Listing 4.3: For Loop Syntax

Here’s an example of how you can use the for loop in C to print the numbers from
1 to 5:

1 #include <stdio.h>
2
3 int main() {
4 for (int i = 1; i ^= 5; i^+) {
5 printf("%d\n", i);
6 }
7 return 0;
8 }

Listing 4.4: Using For Loop in C

Output

1
2
3
4
5

We can declare the loop variable int i in this case, inside the for loop itself. This
is called a local variable and it is only accessible within the loop.

Make sure that all the three components of the loop are present in the for loop and
are separated by semicolons ; not commas , .

4.2.1 When to Use For Loop?

The for loop is used when you know the number of iterations in advance and want to
execute a block of code a specified number of times. It is more concise than the while

loop when you know the starting point, ending condition, and increment/decrement value.

30 CHAPTER 4. LOOPS AND ITERATION IN C

4.3 Do-While Loop

The do-while loop is similar to the while loop, but the condition is checked at the
end of the loop. This means that the block of code is executed at least once, even if the
condition is false. Here’s the syntax of the do-while loop in C:

1 do {
2 ^/ Code to be executed
3 } while (condition);

Listing 4.5: Do-While Loop Syntax

Here’s the flow chart of how a do-while loop works:

Start

Execute loop body

Condition true?

End

Yes

No

Figure 4.2: Flow chart of a do-while loop

4.4. BREAK AND CONTINUE STATEMENTS 31

Here’s an example of how you can use the do-while loop in C to print the numbers
from 1 to 5:

1 #include <stdio.h>
2
3 int main() {
4 int i = 1;
5 do {
6 printf("%d ", i);
7 i^+;
8 } while (i ^= 5);
9 return 0;
10 }

Listing 4.6: Using Do-While Loop in C

Output

1 2 3 4 5

4.3.1 When to Use Do-While Loop?

The do-while loop is used when you want to execute a block of code at least once,
even if the condition is false. It is useful when you want to execute the loop body before
checking the condition.

4.4 Break and Continue Statements

The break and continue statements are used to control the flow of a loop. Here’s
how they work:

• Break Statement: The break statement is used to exit the loop immediately.
It is used to terminate the loop prematurely.

• Continue Statement: The continue statement is used to skip the current it-
eration of the loop and continue with the next iteration. It is used to skip the
remaining code in the loop body and move to the next iteration.

32 CHAPTER 4. LOOPS AND ITERATION IN C

Here’s an example of how you can use the break and continue statements in a loop:

1 #include <stdio.h>
2
3 int main() {
4 for (int i = 1; i ^= 10; i^+) {
5 if (i ^= 3) {
6 continue; ^/ Skip the current iteration
7 }
8 if (i ^= 5) {
9 break; ^/ Exit the loop
10 }
11 printf("%d ", i);
12 }
13 return 0;
14 }

Listing 4.7: Using Break and Continue Statements in C

Output

1 2 4

Notice that the continue statement skips the number 3 and the break statement
exits the loop when the number 5 is encountered even though our stopping condition
is i ^= 10 .

4.5 Nested Loops

A nested loop is a loop inside another loop. You can use nested loops to perform more
complex tasks that require multiple iterations. Here’s an example of how you can use
nested loops to print a pattern:

1 #include <stdio.h>
2
3 int main() {
4 for (int i = 1; i ^= 5; i^+) {
5 for (int j = 1; j ^= i; j^+) {
6 printf("* ");
7 }
8 printf("\n");
9 }
10 return 0;
11 }

Listing 4.8: Using Nested Loops in C

4.5. NESTED LOOPS 33

Output

*
* *
* * *
* * * *
* * * * *

	Introduction to C Programming
	What is C?
	Installing an IDE and a Compiler
	Basic Structure of a C Program
	Compiling and Running a C Program
	Comments in C
	Excersises and Solutions

	Data Types and Variables in C
	Data Type
	Variables
	Declaration and Initialization
	Variable Naming Rules
	Format Specifiers

	Constants
	Taking User Input using scanf()
	Arithmetic Operators
	Exercises and Solutions

	Conditional Statements in C
	Comparison Operators
	Logical Operators
	If Statement
	Else Statement
	Else If Statement

	Switch Statement
	Why Use Switch Statement?

	Exercises and Solutions

	Loops and Iteration in C
	While Loop
	When to Use While Loop?

	For Loop
	When to Use For Loop?

	Do-While Loop
	When to Use Do-While Loop?

	Break and Continue Statements
	Nested Loops

